Plosive spotting with margin classifiers
نویسندگان
چکیده
This paper presents a novel algorithm for precise spotting of plosives. The algorithm is based on a pattern matching technique implemented with margin classifiers, such as support vector machines (SVM). A special hierarchical treatment to overcome the problem of fricative and false silence detection is presented. It uses the loss-based multi-class decisions. Furthermore, a method for smoothing the overall decisions by sequential linear programming is described. The proposed algorithm was tested on the TIMIT corpus, which produced a very high spotting accuracy. The algorithm presented here is applied to plosives detection, but can easily be adapted to any class of phonemes.
منابع مشابه
Ensembles of Classifiers for Cleaning Web Parallel Corpora and Translation Memories
The last years witnessed an increasing interest in the automatic methods for spotting false translation units in translation memories. This problem presents a great interest to industry as there are many translation memories that contain errors. A closely related line of research deals with identifying sentences that do not align in the parallel corpora mined from the web. The task of spotting ...
متن کاملPump-priming PASCAL proposal: Large Margin Algorithms and Kernel Methods for Speech Applications
Research on large margin algorithms in conjunctions with kernels methods has been both exciting and successful. While there have been quite a few preliminary successes in applying kernel methods for speech applications, most the research efforts have focused on non-temporal problems such as text classification and optical character recognition (OCR). We propose to design, analyze, and implement...
متن کاملPrivacy Preserving Techniques for Speech Processing
Speech is perhaps the most private form of personal communication but current speech processing techniques are not designed to preserve the privacy of the speaker and require complete access to the speech recording. We propose to develop techniques for speech processing which do preserve privacy. While our proposed methods can be applied to a variety of speech processing problems and also gener...
متن کاملSpotting Multilingual Consonant-Vowel Units of Speech Using Neural Network Models
Multilingual speech recognition system is required for tasks that use several languages in one speech recognition application. In this paper, we propose an approach for multilingual speech recognition by spotting consonant-vowel (CV) units. The important features of spotting approach are that there is no need for automatic segmentation of speech and it is not necessary to use models for higher ...
متن کاملKey-text spotting in documentary videos using Adaboost
This paper presents a method for spotting key-text in videos, based on a cascade of classifiers trained with Adaboost. The video is first reduced to a set of key-frames. Each key-frame is then analyzed for its text content. Text spotting is performed by scanning the image with a variable-size window (to account for scale) within which simple features (mean/variance of grayscale values and x/y d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001